# Singular Value Decomposition and Applications 

Uri Shaham

March 4, 2024

## 1 Introduction

Definition 1.1 (SVD). Let $A \in \mathbb{R}^{n \times m}$ be a real-valued matrix. The singular value decomposition (SVD) of $A$ is a matrix factorization

$$
A=U \Sigma V^{T}
$$

where $U$ is $n \times n$ orthogonal matrix (i.e., $U^{T} U=I_{n \times n}$ ), $V$ is $m \times m$ orthogonal matrix and $\Sigma$ is $n \times m$ "diagonal" matrix (i.e., $\Sigma_{i j}=0$ for $i \neq j$, with nonnegative entries.

Observation 1.2. $U \Sigma V^{T}=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}$ where $r=\min \{n, m\}$, where $\sigma_{i}:=\Sigma_{i i}$.
Remark 1.3. Since only terms corresponding to nonzero singular values matter in the SVD of a $n \times m$ matrix $A$, it is often convenient to include only the corresponding terms in the SVD, i.e., viewing the matrix $U$ as $n \times r, \Sigma$ as $r \times r$ and $V$ as $m \times r$. This is called the "compact" or "reduced" representation of the $S V D$.

Remark 1.4. Without loss of generality, it is convenient to assume that the singular values are decreasingly ordered, i.e., $\sigma_{i} \geq \sigma_{j}$ for $i<j$.

Observation 1.5. When $n=m, A$ can be viewed as an operator from $\mathbb{R}^{n}$ to $\mathbb{R}^{n}$, acting on any vector $x$ by rotation (possibly with reflection), axis rescaling and another rotation.

### 1.1 Existence and uniqueness of SVD

Theorem 1.6 (Existence of SVD). Any matrix $A \in \mathbb{R}^{n \times m}$ has a SVD.
Proof. The matrix $A^{T} A$ is symmetric (clearly) and positive semi-definite (to see this, assume that $\lambda<0$ is an eigenvalue and let $x$ be the corresponding eigenvector. Then

$$
\sum_{i}(A x)_{i}^{2}=(A x)^{T}(A x)=x^{T} A^{T} A x<0
$$

which is a contradiction.). Then $A^{T} A$ has an eigendecomposition $A^{T} A=V \Lambda V^{T}$ with real (and orthogonal) eigenvectors and non-negative eigenvalues. Let $r=\operatorname{rank}\left(A^{T} A\right)$. Wlog, assume that $\lambda_{1} \geq \lambda_{2}, \ldots \geq \lambda_{r}>0$ and $\lambda_{r+1}=\ldots=\lambda_{m}=0$. Set $\sigma_{i}=\sqrt{\lambda_{i}}$, for $i=1, \ldots, r$. Define $u_{i}=\frac{A v_{i}}{\sigma_{i}}$ for $i=1, \ldots, r$. Then $u_{1}, \ldots, u_{r}$ are orthonormal:

$$
u_{i}^{T} u_{j}=\frac{\left(v_{i}^{T} A^{T}\right) A v_{j}}{\sigma_{i} \sigma_{j}}=\frac{v_{i}^{T}\left(A^{T} A v_{j}\right)}{\sigma_{i} \sigma_{j}}=\frac{v_{i}^{T}\left(\lambda_{j} v_{j}\right)}{\sigma_{i} \sigma_{j}}=\delta_{i j}
$$



Then $U=A V \Sigma^{-1}$, so

$$
U \Sigma V^{T}=A V \Sigma^{-1} \Sigma V^{T}=A
$$

Theorem 1.7. Let $A=U \Sigma V^{T}$ Then $\Sigma$ is uniquely determined.
Proof. This follows from the fact that the singular values of $A$ are the square roots of the eigenvalues of $A^{T} A$, which are uniquely determined, up to order (being the roots of the characteristic polynomial of $A^{T} A$ ).

### 1.2 Power iteration

Observation 1.8. Let $A=U \Sigma V^{T}$ and let $B=A^{T} A$. Then $B=V \Sigma^{2} V^{T}$ and more generally, $B^{k}=V \Sigma^{2 k} V^{T}$. Note that $\Sigma^{2 k}$ is diagonal with entries $\sigma_{i}^{2 k}$.

Assume that $\sigma_{1}>\sigma_{2}$. Then for $k$ large enough $\sigma_{1}^{2 k} \gg \sigma_{2}^{2 k}$, hence

$$
B^{k}=\sum_{i} \sigma_{i}^{2 k} v_{i} v_{i}^{T} \approx \sigma_{1}^{2 k} v_{1} v_{1}^{T}
$$

Let $x$ be an arbitrary vector with nonzero component in the direction of $v_{1}$, i.e., $x=\sum_{i=1}^{m} \alpha_{i} v_{i}$, and $\alpha_{1} \neq 0$. Then for sufficiently large $k, B^{k} x \approx \sigma_{1}^{2 k} \alpha_{1} v_{1}$, i.e., $B^{k} x$ is approximately in the direction of $v_{1}$, so $v_{1}, \frac{B^{k} x}{\left\|B^{k} x\right\|} \rightarrow v_{1}$ as $k \rightarrow \infty$. This gives an approach to find $v_{1}$ :

- Starting from any vector $x_{0}$ not orthogonal to $v_{1}$ (a random vector would typically work):
- Repeat until $\left\|x_{t}-x_{t-1}\right\|_{2} \leq \epsilon$ :

1. $x_{t} \leftarrow B x_{t-1}$
2. Normalize x to be of unit length, i.e., $x_{t} \leftarrow \frac{x_{t}}{\left\|x_{t}\right\|}$.

In the homework you will extend this method to subsequent singular vectors.

## 2 Applications

### 2.1 Low rank approximation

Definition 2.1 (spectral norm). Let $A=U \Sigma V^{T}=\sum_{i=1}^{r} u_{i} v_{i}^{T}$ be $n \times m$ matrix. The spectral norm (also known as the operator norm) of $A$ is defined as its largest singular value, i.e., $\|A\|_{2}:=\sigma_{1}$.

Theorem 2.2 (spetral norm is matrix 2-norm.). $\|A\|_{2}=\sup _{\|x\|_{2}=1}\|A x\|_{2}$
This will be proven next week,.
Theorem 2.3 (Eckart-Young, 1936). The best rank $k$ approximation of $A$ in spectral norm is $A_{k}=$ $\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{T}$.
Proof. First, note that $\left\|A-A_{k}\right\|_{2}=\left\|\sum_{i=k+1}^{r} \sigma_{i} u_{i} v_{i}^{T}\right\|_{2}=\sigma_{k+1}$. Let $B_{k}$ be any $n \times m$ rank- $k$ matrix, i.e., $B_{k}=X Y^{T}$, where $X$ and $Y$ have $k$ columns each. Since $Y$ has $k$ columns, there is a vector $w \in \operatorname{span}\left\{v_{1}, \ldots, v_{k+1}\right\}$ which is orthogonal to any column in Y, i.e., $w:=\sum_{j=1}^{k+1} \gamma_{j} v_{j}$ gives $Y^{T} w=0$. Then $B_{k} w=0$. Wlog $\|w\|=1$, i.e., $\sum_{i=1}^{k+1} \gamma^{2}=1$ (by Pythagoras). Hence we have

$$
\begin{aligned}
\left\|A-B_{k}\right\|_{2}^{2} & \geq\left\|\left(A-B_{k}\right) w\right\|_{2}^{2}(\text { due to theorem 2.2) } \\
& =\|A w\|_{2}^{2} \\
& =\left\|\sum_{i} \sigma_{i} u_{i} v_{i}^{T}\left(\sum_{j=1}^{k+1} \gamma_{j} v_{j}\right)\right\|_{2}^{2} \\
& =\left\|\sum_{i=1}^{k+1} \sigma_{i} \gamma_{i} u_{i}\right\|_{2}^{2} \\
& =\sum_{i=1}^{k+1} \sigma_{i}^{2} \gamma_{i}^{2}\left(\text { as the above is a norm of a vector, expanded in the basis }\left\{u_{1}, \ldots, u_{m}\right\}\right) \\
& \geq \sigma_{k+1} \sum_{i=1}^{k+1} \gamma_{i}^{2} \\
& =\sigma_{k+1} \\
& =\left\|A-A_{k}\right\| .
\end{aligned}
$$

### 2.2 Pseudo inverse

Definition 2.4. The pseudo inverse of a full rank $n \times d$ matrix (with $n \geq d$ ) $X=U \Sigma V^{T}$ is

$$
X^{\dagger}:=\left(X^{T} X\right)^{-1} X^{T}=V \Sigma^{-2} V^{T} V \Sigma U^{T}=V \Sigma^{-1} U^{T}
$$

Remark 2.5. Note that if $X$ is not full rank, or if $n<d, X^{T} X$ is not invertible.

From linear regression, we know that pseudo inverse can be used to solve least squares problems as follows. Let $\left(X \in \mathbb{R}^{n \times d}, y \in \mathbb{R}^{n}\right)$ be a training set of regression data, and let $\beta=X^{\dagger} y$. Then $\beta$ minimizes the least squares prediction error, i.e.,

$$
\beta=\arg \min _{b \in \mathbb{R}^{d}}\|X b-y\|^{2}
$$

In the more general case, we write $X^{\dagger}=V \Sigma^{\dagger} U^{T}$, where $\Sigma^{\dagger}$ is obtained from $\Sigma$ by replacing all nonzero singular values by their reciprocals.

### 2.3 Matrix square root

Let $A$ be a symmetric $n \times n$ PSD matrix with SVD $A=V \Sigma V^{T}$ (in the homework you will be asked to prove $U=V$ whenever $A$ is symmetric and PSD $)$. Let $\Sigma^{\frac{1}{2}}$ be $\operatorname{diag}\left(\sqrt{\sigma_{1}}, \ldots, \sqrt{\sigma_{n}}\right)$. Then for $B=V \Sigma^{\frac{1}{2}} V^{T}$ we have $B B=A$.

### 2.4 Sampling from multivariate normal distribution

Let $K$ be a $d \times d$ covariance matrix (note that in particular, it is symmetric and PSD). To sample $y \in \mathbb{R}^{d}$ from a $\mathcal{N}(\mu, K)$ normal distribution:

1. For $i=1, \ldots d$ sample $x_{i} \sim \mathcal{N}(0,1)$.
2. Set $y=\mu+K^{\frac{1}{2}} x$.

Alternatively, let $K=V \Sigma V^{T}$ be the SVD of $K$.

1. For $i=1, \ldots d$ sample $x_{i} \sim \mathcal{N}\left(\left(V^{T} \mu\right)_{i}, \sigma_{i}\right)$ - easy (why?).
2. Set $y=V x$.

### 2.5 PCA

Let $X$ be a $n \times d$ matrix with mean-centered columns, representing $n$ data points in $d$ dimensions. Then the sample covariance matrix is $X^{T} X$ (up to constant multiplication). In PCA, the principal directions are the eigenvectors $V$ of the covariance matrix. If $X=U \Sigma V^{T}$, the covariance is $V \Sigma^{2} V^{T}$, therefore the PCA embedding is $X V=U \Sigma$. The reconstruction is given by multiplying the embedding from the right by $V^{T}$, i.e., $U \Sigma V^{T}=X$. Reconstruction from fewer terms therefore amounts to low-rank approximation of $X$.

